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Small molecules incorporating lanthanide ions have been
known since the early 1990s to hydrolytically cleave DNA.1

However, it remains of great interest to design synthetic nucleases
with the potential to cleave sequences of choice. Artificial
enzymes, which could target a single promoter region in the
genome, would have both biochemical utility and pharmaceutical
applications as cleavage agents.2 Toward this end, we have taken
an approach to synthetic nuclease design that could exploit the
exquisite specificity achieved by DNA binding proteins to deliver
a hydrolytic metal to a given sequence for selective cleavage.
We report here a metal-binding peptide that exhibits hydrolytic
nuclease activity, demonstrating the feasibility of employing an
EF-hand motif to facilitate Lewis acid catalysis.

Several research groups have been successful in de novo
metalloprotein design, incorporating new metal-binding function-
ality into known protein scaffolds.3 Our design approach utilizes
a known turn in a new context. We have at our disposal a
biological motif with nearly idealized lanthanide-binding proper-
ties, representing a defined unit that promotes the supersecondary
turn structure and serves as a hydrolytic active site. Our chimeric
motif comprises a transcription factor DNA-binding domain and
the topologically equivalent Ca-binding EF-hand motif. The
remarkable similarity of the helix orientation in these two
unrelated protein turns has been used to design a peptide system
with the DNA-binding and metal-binding legacies of the parent
structures. We have found that these hybrid peptides bind
lanthanide ions, have metal-dependent structure, and catalyze
phosphate hydrolysis of both activated phosphate esters and
supercoiled duplex DNA.

Chimeric Design. The design of the chimeric 33- and
34-residue peptides was based on overlays of Engrailed and
Calmodulin crystal structures (Figure 1). The HTH and EF-hand
motifs consist of two helices at approximate right angles to one
another and thus exhibit a similar turn topology. Our design
incorporates helices from the DNA-binding protein and the metal-
binding turn from the Ca protein. P3 comprisesR2 andR3 of
Engrailed and the consensus EF-hand sequence, whereas P4a
comprisesR2 andR3 of Engrailed, minus the last turn(s) ofR2
and theâ-turn, and contains Calmodulin loop III.4 This latter
design incorporates a greater fraction of the EF-hand turn (single
underline) than does P3 and results in a shift in register of the
Ca-binding loop to the N-terminal side for P4a. The design of
P3 has been described in more detail elsewhere.5

Metal Binding and Solution Structure. The designed chi-
meras bind metals with an increase in secondary solution structure,
as evidenced by CD and NMR titration studies.5 The binding
affinity of P3 for Eu(III) was characterized by isothermal titration
microcalorimetry.6 The dissociation constant for EuP3 was found
to beK1 ) 10 ( 4 µM, from which the amount of bound and
free Eu(III) in solution was calculated (Table 1). Although there
is only one binding site per peptide, the binding behavior of this
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Figure 1. Two views of the overlay of Engrailed HTH region (R2-R3)
and one EF-hand of Calmodulin. The C-terminalR3 is the homeodomain
recognition helix, which binds in the DNA major grove. Engrailed (1ENH)
is shown in blue, Calmodulin (1OSA; third Ca site) in purple, and the
Ca(II) ion as a red sphere.
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chimera is not simply biomolecular.6 In analogy to isolated EF-
hand peptides, which form well-defined back-to-back dimers in
solution,7 EuP3 also dimerizes at higher concentrations, as
evidenced by microcalorimetry and CD titration studies.6,8 In
contrast, chimera P4a shows no appreciable dimerization to 300
µM metal-peptide. The binding affinity of P4a for Eu(III) was
determined to beK1 ) 3 ( 0.3 µM by fluorescence quenching
of W25 as a function of added metal. The decrease in fluorescence
was well-modeled by a single-exponential assigned to metal
binding (K1), and the inclusion of a second equilibrium step (Kdim)
did not improve the fit.

Hydrolytic Phosphate Cleavage. Because the EF-hand is
physiologically strictly a structural motif, an isolated Ca-binding
loop’s ability to affect hydrolytic cleavage was addressed. The
hydrolysis of bisnitrophenyl phosphate (BNPP) was followed
spectrophotometrically under turnover conditions, and absorbance
vs time was plotted to give pseudo-first-order rate constants. The
absorbance increase at 400 nm due to liberated 4-nitrophenolate
was observed over the initial 10-14 h of the reaction (e10%
BNPP converted). No measurable hydrolysis of BNPP was
observed in the absence of metal or peptide.9

The chimeric metallopeptides catalyze BNPP hydrolysis with
rate constants on the order ofk ) 10-5-10-6 s-1 (Table 1),

comparable to rate constants with other Ln catalysts.10 This
represents a rate increase of approximately 106 over the uncata-
lyzed reaction, showing that the metal in the Ca-binding motif is
indeed hydrolytically active (at 37°C, pH) 7, BNPP is estimated
to be hydrolyzed at a rate of 6× 10-11 s-1).11 The observed
phosphate hydrolysis rates show a linear dependence on catalyst
concentration at low concentrations, which can be fit to a second-
order rate relationship for both EuP3 and EuP4a (k ) 1 × 10-1

and k ) 3 × 10-1 M-1 s-1, respectively). However, the linear
relationship breaks down at concentrations greater than 25µM
Eu-peptide (calculated [EuP]), suggesting that at higher metal-
lopeptide concentrations, additional equilibria have a significant
effect on the cleavage rates. Notably, the concentrations of free
Eu(III) (based on KINSIM12 calculations employing experimental
K1 dissociation constants) are not sufficient to explain the cutting
rates in this regime.

These metallopeptides have affinity for supercoiled, double-
stranded DNA.5 To test their catalytic ability toward DNA as well
as model compounds, the conversion of supercoiled plasmid (type
I) to open circular (type II), linear (type III), or smaller fragments
was monitored by agarose gel electrophoresis.13 The concentra-
tion-dependent formation of open circular plasmid was observed
in the presence of EuP3 (Figure 3). Over a 10-300 µM EuP3
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Table 1. Pseudo First-Order Rates of BNPP Cleavage as a
Function of Eu-Peptide, at 37°Ca

concentration
(µM Eu/µM P3)

[Eufree]
(calc;µM)

[EuP3]
(calc;µM)

[EuP32]
(calc;µM)

rate (kobs)
(s-1 × 107)

10/10 6.2 3.6 0.2 6.0
25/25 11.6 11.6 1.8 7.3
25/50 5.6 14.1 5.3 20.6
50/50 18.9 25.9 5.2 28.8

concentration
(µM Eu/µM P4a) [Eufree] [EuP4a] [EuP4a2]

rate (kobs)
(s-1 × 107)

10/10 4.2 5.8 11.3
25/25 7.2 17.8 56.3
25/50 2.4 22.6 62.0
50/50 10.8 39.2 149.5
50/100 2.7 47.3 212.0

concentration
(µM EuCl3) [Eufree] [EuP] [EuP2]

rate (kobs)
(s-1 × 107)

10 10 1.4
20 20 2.7

a BNPP concentration) 500 µM; pH ) 7.7, 10 mM Tris buffer.
Calculated [EuP], [EuP2], and [Eufree] values are based on the measured
dissociation constants for EuP3 (K1 ) 10 µM, Kdim(obs) ) 70 µM) and
EuP4a (K1 ) 3 µM). Error limits: kobs ) ( 2%.

Figure 2. Sequence of the chimeric P3 and P4a peptides. Parent protein
sequence is indicated by double underlining (homeodomain) or single
underlining (EF-hand), and the 12 residues of the Ca-binding loop are
shaded. On the basis of the known crystal structures of the parent motifs,
predicted sites of Eu3+ binding are indicated by anx.

Figure 3. Agarose gel electrophoresis of supercoiled pUC19 plasmid,
with increasing concentrations of EuP3 (1:1 ratio).14
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gradient, nicking occurred from 10 to 150µM, with the greatest
amount of cleavage at 30µM EuP3. Neither EuCl3 nor free P3
promotes appreciable DNA cleavage at these concentrations,
though strong cleavage by EuCl3 occurs atg100µM (Supporting
Information). A truncated EF-hand peptide (20-mer without
Engrailed helices) also cleaves supercoiled DNA, though the EF-
hand loop has little DNA affinity (Supporting Information). These
results suggest that a monomeric EF-hand is catalytically active
toward DNA, as it is toward our model system. However, higher
concentrations of EuP3 are less effective, suggesting that ag-
gregation to nativelike dimer structures (EuP32 or Eu2P32) results
in a noncatalytic form of the metallopeptide. Additionally, tight
peptide-DNA binding may inhibit catalyst release and slow rates.

We have demonstrated that HTH/EF-hand chimeras bind
metals, have metal-dependent solution structure, and cleave DNA.
These results are a significant step in establishing the feasibility

of this novel nuclease design. We are currently investigating the
sequence selectivity of this DNA cleavage.
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